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SUMMARY

We develop a novel framework for the analysis of medical imaging data, including magnetic
resonance imaging, functional magnetic resonance imaging, computed tomography and more.
Medical imaging data differ from general images in two main aspects: (i) the sample size is often
considerably smaller and (ii) the interpretation of the model is usually more crucial than predicting
the outcome. As a result, standard methods such as convolutional neural networks cannot be directly
applied to medical imaging analysis. Therefore, we propose the deep Kronecker network, which can
adapt to the low sample size constraint and offer the desired model interpretation. Our approach is
versatile, as it works for both matrix- and tensor-represented image data and can be applied to discrete
and continuous outcomes. The deep Kronecker network is built upon a Kronecker product structure,
which implicitly enforces a piecewise smooth property on coefficients. Moreover, our approach resem-
bles a fully convolutional network as the Kronecker structure can be expressed in a convolutional
form. Interestingly, our approach also has strong connections to the tensor regression framework pro-
posed by Zhou et al. (2013), which imposes a canonical low-rank structure on tensor coefficients. We
conduct both classification and regression analyses using real magnetic resonance imaging data from
the Alzheimer’s Disease Neuroimaging Initiative to demonstrate the effectiveness of our approach.

Some key words: Brain imaging; Convolutional neural network; Kronecker product; Tensor decomposition.

1. Introduction

Medical imaging analysis plays a central role in modern medicine. With the progression of imaging
technologies, such as computed tomography, magnetic resonance imaging, MRI and functional mag-
netic resonance imaging, fMRI, the diagnosis and treatment of diseases have experienced significant
improvements.

Although image analysis has been intensively studied over the past years, medical image data dif-
fers from general images in two main aspects. First, medical imaging typically has a much smaller
sample size, but with higher order and higher dimension. For example, datasets in MRI analysis
frequently consist of only a few hundred or at most a few thousand patients, each with an MRI
scan that contains millions of voxels. In contrast, sample sizes in general image recognition problems
can easily reach millions, surpassing the image dimensions significantly. Second, while predicting
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the outcome is a top priority in many image recognition problems, medical imaging analysis places
greater importance on interpreting the model.

Because of the unique nature of medical imaging data, it is challenging to directly apply gen-
eral image methods. In recent years, convolutional neural networks (Fukushima & Miyake, 1982;
LeCun et al., 1998) have emerged as the most successful method for image recognition. However, their
training requires large amounts of samples, which are rarely available in medical imaging analysis.
Moreover, a convolutional neural network typically consists of thousands of unknown parameters
within a black box, rendering it difficult to interpret and unable to meet the needs of medical imaging
analysis.

In the statistics community, numerous efforts have been made to develop methodologies for
medical imaging analysis. One common strategy is to vectorize the images and use the resulting vec-
tors as independent predictors. Built on this strategy, various methods have been developed in the
literature, including total variation and fused lasso-based approaches (Rudin et al., 1992; Tibshirani
et al., 2005; Wang et al., 2017), Bayesian methods (Goldsmith et al., 2014; Kang et al., 2018) and
more. Despite their effectiveness in different applications, vectorizing images is clearly not an opti-
mal strategy. Apart from the loss of spatial information, the resulting ultra-high-dimensional vectors
could also face significant computational issues. When image data are represented as tensors, Zhou
et al. (2013) proposed a tensor regression framework that imposes a canonical low-rank structure on
the tensor coefficients, thereby significantly reducing the number of unknown parameters. Further-
more, Feng et al. (2021) proposed a new internal variation penalization to mimic the effects of total
variation and promote smoothness in tensor image regression. While the tensor regression framework
is appealing for general tensors, it does not fully capitalize the special nature of image data. Recently,
Wu & Feng (2023) proposed an innovative framework named sparse Kronecker product decomposi-
tion for identifying signal regions in image regression. As this approach is designed for sparse signal
detection, it is not well suited for analysing images with dense signals.

To this end, we aim to develop an approach for medical imaging analysis that can (i) adapt to low
sample size limitation, (ii) enjoy good interpretability and (iii) achieve desired prediction power. In
this paper, we develop a novel framework called the deep Kronecker network that is able to achieve all
three goals. The deep Kronecker network is built upon a Kronecker product structure, which inher-
ently imposes a piecewise smooth property on coefficients. Moreover, the deep Kronecker network
allows us to locate the most influential regions for the outcome, facilitating model interpretation. Our
approach works for both matrix- and high-order tensor-represented image data, and thus MRI and
fMRI can be addressed. In addition, the deep Kronecker network is embedded in a generalized linear
model; therefore, it is applicable to both discrete and continuous outcomes.

We refer to the deep Kronecker network as a network because it resembles a convolutional neural
network, particularly, a fully convolutional network. While the deep Kronecker network originates
from a Kronecker structure, it can also be represented in a convolutional form. Unlike a classical
convolutional neural network, the convolutions in the deep Kronecker network do not overlap. This
design allows us to achieve maximized dimension reduction and at the same time enjoy desired model
interpretability. Interestingly, the deep Kronecker network is also connected to the tensor regres-
sion framework of Zhou et al. (2013). We show that the deep Kronecker network, not only includes
tensor regression as a special case, but can also be easily implemented by applying tensor regres-
sion on certain reshaped images. Consequently, three seemingly irrelevant methods, deep Kronecker
network, convolutional neural network and tensor regression, are connected. Finally, we conduct a
real MRI analysis from the Alzheimer’s Disease Neuroimaging Initiative to further demonstrate the
effectiveness of our approach.

2. Deep Kronecker network

Suppose that we observe n samples, each consisting of a tensor-represented image X i ∈ R
d×p×q

and a scalar response yi for i = 1, 2, …, n. Assume that yi follows a generalized linear model:

yi | Xi ∼ P(yi | Xi) = ρ(yi) exp{yi〈Xi, C〉 − ψ(〈Xi, C〉)} (1)
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Miscellanea 3

Fig. 1. An illustration of (2) with L = 3, R = 2, Br
3,Br

2 ∈ R
2×2, Br

1 ∈ R
4×4, r = 1, 2.

with C ∈ R
d×p×q the target unknown coefficient tensor, 〈·, ·〉 the inner product and ρ(·) and ψ(·)

certain known univariate functions. Here we focus on the image data and omit other possible design
variables, such as age, sex, etc. These variables can be added back into the model easily if needed.
Given model (1), we have, for a certain known link function g(·),

g{E(yi)} = 〈Xi, C〉.
Now we introduce the Kronecker product for K-order tensors.

DEFINITION 1 (Tensor Kronecker product). Let A ∈ R
p1×···×pK and B ∈ R

q1×···×qK be two
K-order tensors with entries denoted by Ai1,…,iK and Bj1,…,jK , respectively. The tensor Kronecker pro-
duct C = A⊗B is defined by C[j1i1],…,[jK iK ] = Ai1,…,iKBj1,…,jK for all possible values of (i1, …, iK) and
(j1, …, jK), where [jkik] = jk + (ik − 1)qk for all k = 1, 2, …, K.

Our deep Kronecker network models the tensor coefficient C using a rank-R Kronecker product
decomposition with L(� 2) factors:

C =
R∑

r=1

Br
L ⊗ Br

L−1 ⊗ · · · ⊗ Br
1. (2)

Here Br
l ∈ R

dl×pl×ql , l ∈ [L], r ∈ [R], are unknown tensors and referred to as Kronecker factors. The
sizes of Br

l are unknown, but are assumed to satisfy d = ∏L
l=1 dl, p = ∏L

l=1 pl and q = ∏L
l=1 ql. For

ease of notation, we also write (2) in the form C = ∑R
r=1

⊗1
l=L Br

l .
Figure 1 illustrates a Kronecker product decomposition with rank R = 2 and factor number L = 3

for a sparse matrix where the signal takes the form of a circle. In general, the Kronecker product
decomposition (2) is able to approximate arbitrary matrices with a sufficiently large rank R. This can
be seen by connecting (2) to the canonical tensor decomposition; see § 4.

The deep Kronecker network is designed for analysing medical images with low sample sizes
and high dimensions. For three-order tensors, the deep Kronecker network could reduce the para-
meter number from

∏L
l=1 dlplql to R

∑L
l=1 dlplql. Such a dimension reduction is particularly crucial in

medical imaging analysis, where sample sizes are often limited.
The deep Kronecker network could be solved using maximum likelihood estimation. Under

models (1) and (2), the negative loglikelihood function with regard to factors [B1
1, …,BR

L ] is pro-
portional to

�(B1
1, …,BR

L ) =
n∑

i=1

{
ψ

(〈
Xi,

R∑
r=1

1⊗
l=L

Br
l

〉)
− yi

〈
Xi,

R∑
r=1

1⊗
l=L

Br
l

〉}
. (3)

When the outcome yi is Gaussian, the maximum likelihood estimation reduces to ordinary least
squares. To minimize (3), we apply an alternating minimization algorithm to iteratively update the

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad049/7257066 by U

C
 - San Francisco user on 30 N

ovem
ber 2023
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blocked factors [B1
l ,B2

l , …,BR
l ], with [B1

l′ ,B2
l′ , …,BR

l′ ], l′ |= l, fixed. We defer the computation details
to the Supplementary Material.

In the literature, Kronecker product decomposition has become a powerful tool for matrix approx-
imation and dimension reduction. In particular, Kronecker product singular value decomposition is
referred to as the problem of recovering Br

l from a given matrix C = ∑R
r=1

⊗1
l=L Br

l . Such a prob-
lem was mostly studied under L = 2; see, e.g., Cai et al. (2020). It becomes much more challenging
when L � 3 (Hackbusch et al., 2005). More recently, Batselier & Wong (2017) considered Kronecker
product singular value decomposition with L � 3 and proposed an algorithm to convert it to the
canonical tensor decomposition. Kronecker product decomposition has also been studied in other
contexts, e.g., correlation matrix estimation (Hafner et al., 2020), matrix autoregressive model (Chen
et al., 2020) and sparse signal detection (Wu & Feng, 2023).

3. Deep Kronecker network in convolutional form and the nonlinear deep Kronecker
network

We refer to the deep Kronecker network as a network because it resembles a convolutional neural
network. To illustrate the connections between the deep Kronecker and convolutional neural net-
work, we first introduce a non-overlapping convolution operator. Given two tensors X ∈ R

d0×p0×q0

and B ∈ R
d′×p′×q′

, we define the non-overlapping convolution between X and B as

X ∗ B ∈ R
d′′×p′′×q′′

, d ′′ = d0/d ′, p′′ = p0/p′, q′′ = q0/q′,

where the (h, j, k)th component is

(X ∗ B)h,j,k = 〈X d′×p′×q′
h,j,k ,B〉, 1 � h � d ′′, 1 � j � p′′, 1 � k � q′′.

Here X d′×p′×q′
h,j,k is the (h, j, k)th block of X and is of size d ′ × p′ × q′. Building on this convolution

operator, the following theorem establishes the connections between the deep Kronecker network
and convolutional neural network.

THEOREM 1. The deep Kronecker network can be written in convolutional form:

g{E(yi)} =
〈
Xi,

R∑
r=1

1⊗
l=L

Br
l

〉
⇐⇒ g{E(yi)} =

R∑
r=1

Xi ∗ Br
1 ∗ Br

2 ∗ · · · ∗ Br
L−1 ∗ Br

L.

Theorem 1 suggests that response yi could also be modelled by a summation of consecutive con-
volutions between image Xi and factors Br

l . In other words, the deep Kronecker network can be
considered as a network consisting solely of convolution layers, that is, a fully convolutional network.
More specifically, we may regard L as the depth of a deep Kronecker network, R as the width and Br

l
as the convolution filters. But here the convolutions do not overlap with each other, meaning that the
stride sizes are equal to the filter sizes. On the one hand, the non-overlapping design allows the deep
Kronecker network to achieve maximized dimension reduction, thus eliminating the need for pooling
layers. On the other hand, it enables the explicit formulation of the coefficient tensor, allowing us to
locate the significant regions and achieve desired model interpretability. Both aspects are crucial in
medical imaging analysis. Figure 2 illustrates the deep Kronecker network in a convolutional form.

The activation function in the deep Kronecker network is taken as an identity function. By intro-
ducing a nonlinear function h(·), we can generalize the deep Kronecker network to its nonlinear
version

g{E(yi)} =
R∑

r=1

h[· · · h{h(Xi ∗ Br
1) ∗ Br

2} · · · ∗ Br
L−1] ∗ Br

L.

Standard activation functions, such as the rectified linear unit or sigmoid, can be used for the
deep Kronecker network. This nonlinear network can be easily solved by employing common deep
learning frameworks like Pytorch.
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Fig. 2. An illustration of the deep Kronecker network in a convolutional form.

4. Deep Kronecker network and tensor regression

In this section, we demonstrate the connections between the deep Kronecker network and the
tensor regression of Zhou et al. (2013). Specifically, we show that the deep Kronecker network, not
only includes tensor regression as a special case, but it can also be implemented by applying tensor
regression on certain reshaped images.

Suppose that a tensor C ∈ R
d×p×q can be decomposed as C = ⊗1

l=L Bl. Then the entries of C are
characterized by C[h1···hL],[j1···jL],[k1···kL] = ∏L

l=1[Bl]hl ,jl ,kl . Here the square brackets indicate grouping of
indices. For example, the grouped index [h1 · · · hL] refers to the linear index h1 + (h2 − 1)d1 + · · · +
(hL − 1)

∏L
l=1 dl. Now we define T : Rd×p×q → R

(d1p1q1)×···×(dLpLqL) as a reshaping operator from C to
an L-order tensor T (C) with the entries characterized by

[T (C)][h1j1k1],…,[hLjLkL] = C[h1···hL],[j1···jL],[k1···kL].

By this operator, Batselier & Wong (2017) provided the following lemma to connect the Kronecker
product and canonical tensor decomposition.

LEMMA 1 (Batselier & Wong, 2017). Given a tensor C ∈ R
d×p×q, if C = ∑R

r=1

⊗1
l=L Br

l then we
have T (C) = ∑R

r=1 br
1 ◦ · · · ◦ br

L, where br
l = vec(Br

l ), l ∈ [L] and r ∈ [R].
Canonical tensor decomposition is frequently used to approximate tensors and is employed by

Zhou et al. (2013) for image data analysis. As the reshaping operator T (·) is one to one, Lemma 1
suggests that Kronecker product decomposition (2) is also able to approximate arbitrary tensors.
Furthermore, we have the following theorem to connect the deep Kronecker network and tensor
regression.

THEOREM 2. The low Kronecker rank in the deep Kronecker network is equivalent to a low-canonical-
rank assumption on the reshaped tensors T (Xi). Let br

l = vec(Br
l ); we have

g{E(yi)} =
〈
Xi,

R∑
r=1

1⊗
l=L

Br
l

〉
⇐⇒ g{E(yi)} =

〈
T (Xi),

R∑
r=1

br
1 ◦ · · · ◦ br

L

〉
.

Remark 1. Theorem 2 implies that the deep Kronecker network could be solved by a two-step
procedure: (i) reshape the original images and (ii) apply a tensor regression algorithm, such as the
block relaxation in Zhou et al. (2013), on the reshaped images. The reshaping step is crucial and
results in different performances of the deep Kronecker network and tensor regression.
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6 Long Feng and Guang Yang

Fig. 3. An illustration of the Kronecker product and canonical tensor decomposition.

Remark 2. The deep Kronecker network includes tensor regression as a special case. Suppose that
images are of size D1 × D2 × D3. Then tensor regression could be viewed as a special deep Kronecker
network with factor number L = 3 and factors Br

1 ∈ R
D1×1×1, Br

2 ∈ R
1×D2×1, Br

3 ∈ R
1×1×D3 for r ∈ [R].

Under such a case, T (Xi) = Xi. Thus, the deep Kronecker network is a more flexible and adaptive
framework for allowing different sizes of factors.

Remark 3. The size of factors Br
l and the number of layers Lr are allowed to be different across r.

Under such a case, we can apply different reshaping operations Tr(Xi) and obtain

g{E(yi)} =
R∑

r=1

〈Tr(Xi), br
1 ◦ · · · ◦ br

Lr
〉. (4)

Model (4) is no longer a tensor regression model. However, it could still be solved by an alternating
minimization algorithm with br

l iteratively updated by fixing br′
l′ , l′ |= l, r′ |= r.

Remark 4. The deep Kronecker network implicitly imposes a blockwise smoothness structure on
the coefficients, a property particularly suitable for image analysis. Figure 3 illustrates Kronecker
product decomposition and its relation to canonical tensor decomposition. It is clear that the matrix
created by the Kronecker product exhibits a blockwise smooth pattern.

5. Theoretical analysis

In this section, we show that the solution computed by an alternating minimization algo-
rithm is guaranteed to converge to the truth, despite the problem being highly nonconvex. Our
target is to bound the distance between the estimated coefficient Ĉ and its true counterpart C
when the network structure is correctly specified. In this context, the distance refers to the tensor
angles. For two tensors U ,V of the same shape, define the distance, angle between, U and V as
dist2

(U ,V) = 1 − 〈U ,V〉2/(‖U‖2
F‖V‖2

F), where ‖ · ‖F is the Frobenius norm. Here we focus on a rank-1
deep Kronecker network under the linear model, but our results can be extended to general cases.

Condition 1 (Restricted isometry property). Let Xi be the observed image tensors. Suppose that,
for all Br

l ∈ R
dl×pl×ql , all l ∈ [L] and r = 1, 2, there exists a constant δ ∈ (0, 1) such that

(1 − δ)

∥∥∥∥
2∑

r=1

1⊗
l=L

Br
l

∥∥∥∥
2

F

� 1
n

n∑
i=1

〈
Xi,

2∑
r=1

1⊗
l=L

Br
l

〉2

� (1 + δ)

∥∥∥∥
2∑

r=1

1⊗
l=L

Br
l

∥∥∥∥
2

F

.

Now we present an overview of our main theorem; comprehensive details can be found in the
Supplementary Material.

THEOREM 3. Suppose that model yi = 〈Xi, C〉+εi holds with C = ⊗1
l=L Bl . Assume that Condition 1

holds with a small enough constant δ and ‖ε‖2 � c(1 − δ)‖C‖F/2 for a certain constant c. Suppose
that the likelihood function (3) is solved using an alternating minimization algorithm with a correctly
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Table 1. Results of the ADNI analysis. The best-performing method is
marked with an asterisk

Task Criterion DKN TR TRlasso CNN

Regression RMSE *0.2258 0.2627 0.2557 0.2909
Classification Accuracy *79.25% 66.80% 76.76% 78.01%

DKN, deep Kronecker network; TR, tensor regression; TRlasso, tensor regression with
lasso penalty; CNN, convolutional neural network; RMSE, root-mean-square error.

specified network structure and a spectral initialization. Let κ < 1 be a contraction parameter, μ be the
initialization error and τ = √

(1/n) log n. Then, after t iterations, the distance between estimates Ĉ(t)

and C is bounded with high probability:

dist(Ĉ(t), C) � c1κ
tμ + c2τ . (5)

Remark 5. The first term on the right-hand side of (5) can be viewed as the optimization error, and
the second term is the statistical error. Theorem 3 suggests that the optimization error decays geo-
metrically, even if the objective function (3) is highly nonconvex. After t � t0 +log(n−1 log n)/2 log(κ)

iterations, dist(Ĉ(t), C) � √
(1/n) log n holds with high probability.

Remark 6. Because of the connection between the deep Kronecker network and tensor regression,
Theorem 3 also works for a tensor regression solved by the block relaxation algorithm. The spectral
initialization required by Theorem 3 is essential, as it can be proved to be not too far away from the
truth.

6. The Alzheimer’s Disease Neuroimaging Initiative analysis

In this section, we analyse Alzheimer’s disease with data collected from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, https://adni.loni.usc.edu/), a study designed to detect
and track Alzheimer’s disease with clinical, genetic and imaging data. In the ADNI analysis, we use
T1-weighted MRI scans with two types of outcome:

(i) binary outcomes for classification, indicating whether or not participants have Alzheimer’s
disease,

(ii) continuous outcomes for regression, indicating the mini-mental state examination score, a
commonly used reference for the diagnosis of Alzheimer’s disease.

The images, after pre-processing, are represented as tensors with dimension 643. We use the first
two phases of ADNI (ADNI-1 and ADNI-GO) as training and the third phase ADNI-3 as testing,
resulting in 417 subjects for training and 241 for testing. The deep Kronecker network is implemented
with six layers, factors of size 23 and ranks tuned by the Bayesian information criterion. We compare
the performance of the deep Kronecker network with three competing methods: the convolutional
neural network, tensor regression and tensor regression with lasso penalty. We report the prediction
results of the four methods in Table 1 and plot the estimated coefficients in Fig. 4.

From Table 1 and Fig. 4, we can see that the deep Kronecker network, not only delivers the most
accurate prediction, but also detects the most precise regions. Moreover, the regions detected by the
deep Kronecker network in classification and regression are consistent, focusing primarily around
the hippocampus. This is in line with medical literature, which has established a connection between
the hippocampus and Alzheimer’s disease; see, e.g., Ball et al. (1985).

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asad049/7257066 by U

C
 - San Francisco user on 30 N

ovem
ber 2023

https://adni.loni.usc.edu/


8 Long Feng and Guang Yang

DKN TR TRLasso
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z = –15

z = –6

R

Fig. 4. Detected regions in regression (top row) and classification (bottom row).
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